2023-2024 Undergraduate Course Catalog 
    
    Nov 23, 2024  
2023-2024 Undergraduate Course Catalog [ARCHIVED CATALOG]

Biomedical Engineering, BS


Return to {$returnto_text} Return to: Academic Offerings

Department Chair:

Julie Hasenwinkel
329F Link Hall
315-443-1931; fax: 315-443-9175

Faculty

Jesse Q. Bond, Katie D. Cadwell, Ruth Chen, Viktor Cybulskis, Era Jain, Julie M. Hasenwinkel, James H. Henderson, Ian Hosein, Zhen Ma, Mary Beth Monroe, Shikha Nangia, Dacheng Ren, Ashok Sangani, Cindy Smith, Pranav Soman, Radhakrishna Sureshkumar, Theodore Walker, Yaoying Wu, Pun To Yung, Yi Zheng

Adjunct/Research Faculty:

Eric Finkelstein, Kent Ogden, David Quinn, Katherine Tsokas

Affiliate Faculty:

Samuel Herberg, Juntao Luo, Liviu Movileau, Davoud Mozhdehi, Alison Patteson, Rachel Steinhardt 

Emeritus Faculty:

Gustav Engbretson, John Heydweiller, George Martin, Philip Rice, Klaus Schroder, Robert L. Smith, Lawrence L. Tavlarides

Undergraduate Biomedical Engineering Program Director:

Pun To Yung
361 Link Hall
315-443-4848

ptyung@syr.edu

The mission of the Department of Biomedical and Chemical Engineering is to provide students with mentoring, curricular experience, and extracurricular opportunities consistent with their individual career objectives in order to

  • prepare them to apply science, mathematics, and engineering knowledge to serve the needs of society;
  • instill in them a deep sense of respect for others and a strong foundation in professional and social ethics; and
  • develop in them the understanding that continued education will further their professional and leadership skills.

Program Educational Objectives

The objectives of the undergraduate biomedical engineering program are:

  • Graduates will have mastered engineering and biological fundamentals and be able to apply critical thinking to solve problems at the interface of science or medicine and engineering.
  • Graduates will have a broad education that develops their ability to make informed and ethical decisions and understand the engineer’s role in society;
  • Graduates will be able to effectively communicate their work and ideas;
  • Graduates will be prepared to be success in the biomedical industry and postgraduate education in engineering, science, or professional studies.

The Biomedical Engineering curriculum at Syracuse provides a strong foundation in mathematics, chemistry, physics, engineering, and biology in preparation for engineering applications in medicine and biology such as biomedical instrument design, medical device design, orthopedic prosthesis design, or engineering support for healthcare services. Engineering design is an important part of the curriculum, introduced in the student’s first semester and culminating in the senior year with a capstone project. In consultation with a faculty advisor, students can specialize their curriculum to emphasize preparation for industry, research, or premedical studies. This curriculum shares several courses with the chemical engineering program. These courses provide our students with a strong background in the engineering sciences so they can explore emerging topics at the interface of the two fields. Students interested in research with the possibility of continued study in graduate school are encouraged to elect one or more independent study projects and a graduate-level course in an area of research interest.

With the careful planning, a student can meet the entrance requirements established by the Association of American Medical Colleges.

This program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Student Learning Outcomes


Graduates from the program in biomedical engineering must achieve the following student outcomes:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics;
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors;
  3. an ability to communicate effectively with a range of audiences;
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts;
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives;
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions;
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies;
  8. an understanding of biology and physiology, and the capability to make measurements on living system and solve associated bioengineering problems.

Biomedical Engineering Course Requirements


Fourth Year, Spring Semester (15)


Total: 131 credits


Return to {$returnto_text} Return to: Academic Offerings